
.J.  Fluid Mech. (1978), vol. 87, pnrt 2, pp.  385-394 

Printed in Great Brittrin 

385 

On the existence of three-dimensional 
convection in a rectangular box containing 

fluid-saturated porous material 

By JOE M. STRAUS A N D  GERALD SCHUBERTT 
Space Sciences Laboratory, The Ivan A. Getting Laboratories, 

The Aerospace Corporation, Los Angeles, California 90009 

(Received 21 November 1977)  

On the basis of a stability analysis of finite amplitude, two-dimensional convection, 
we have determined the dimensions of boxes containing fluid-saturated porous 
material in which con\-ection is necessarily unsteady or steady and three-dimensional. 
For certain box sizes, convective rolls are unstable a t  Rayleigh numbers Ra lower 
than 380, the value below which rolls are stable forms of convection between infinite 
parallel planes. For Rn = 100 and 200, it appears unlikely that there are any box 
dimensions for which there is not a stable (possibly multicellular) two-dimensional 
steady motion. At Ra = 340 and 400, boxes in which rolls are unstable have heights 
which range from one to five times their horizontal dimensions. 

1. Introduction 
Under what conditions will steady, finite amplitude thermal convection be fully 

three-dimensional 1 We attempt to answer this question for convection in a rectangular 
box containing fluid-saturated porous material heated uniformly from below. The 
existence of three-dimensional convection for certain box sizes over a limited range of 
Rayleigh numbers has been demonstrated (Holst & Aziz 1972). Such solutions are of 
fundamental importance for our understanding of the general phenomenon of 
convection. 

Straus (1 974) studied the stability of two-dimensional, finite amplitude convective 
rolls in an infinite slab of porous material saturated with fluid and heated uniformly 
from below. For Rayleigh numbers greater than 4772, the critical value for the onset of 
convection in an infinite slab (Horton & Rogers 1945; Lapwood 1948), and less than 
about 380, two-dimensional rolls are stable to infinitesimal roll perturbations with 
axes perpendicular to the roll axes of the basic state over only a limited range of basic- 
state horizontal wavenumbers. For Rayleigh numbers larger than about 380, two- 
dimensional rolls are always unstable. Here the Rayleigh number is Ra = ccgKdAT/vk, 
where 01 is the thermal expansivity of the fluid, g is the acceleration due to gravity, K is 
the permeability of the porous material, d is the thickness of the layer, AT is the 
positive temperature difference across the layer, v is the kinematic viscosity of the 
fluid and k is the combined thermal diflusivity of the porous medium and fluid. 

t Permanent address : Department of Earth and Space Sciences, University of California, 
Los Angeles, California 90024. 
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Thus, in a horizontally infinite layer we can only say that, for 380 2 Ra > 4m2, 
steady convection is either two-dimensional with limited values of the horizontal 
wavenumber or three-dimensional; it is not possible to  conclude that steady con- 
vection will necessarily be three-dimensional. I n  fact, two-dimensional convection is 
probably preferred when its horizontal wavenumber lies within the allowed range; 
however, initial conditions may affect the horizontal planform of the motion. For 
Ra 2 380, steady convection in an infinite slab is necessarily three-dimensional. Of 
course, there are circumstances in which steady convection need not exist and only 
a two- or three-dimensional oscillatory state may be possible (Horne & O’Sullivan 
1974; Caltagirone 1975). This is a contingency that we shall not attempt to deal with in 
this paper. Rather, we shall always ask, if steady convection exists, is it two- or 
three-dimensional 1 

I n  a region of finite dimensions, in particular a rectangular box, it is possible to make 
more precise statements about the two- or three-dimensional character of steady con- 
vection. This is because two-dimensional convection must exactly fit the dimensions 
of the box. Thus there are two basic wavenumbers of two-dimensional convection in a 
box, corresponding to rolls with horizontal axes parallel to  one of the two pairs of sides 
of the box. The feasibility of multicellular convection means that the wavenumbers 
for two-dimensional rolls could be integral multiples of the basic wavenumbers. 
Although two-dimensional rolls of a given wavenumber may be unstable in an infinite 
layer, if these rolls were in a box they could be stable, because the orthogonal rolls to 
which they are potentially unstable in an infinite layer might not fit within the box. 

Straus (1974) did not give the wavenumbers of the orthogonal rolls which destabilize 
a given basic two-dimensional roll convection pattern. Thus one cannot determine 
from his results whether two-dimensional convection in a rectangular box will be 
stable or unstable. The major purpose of this paper is to extend the analysis of Straus 
(1974) to  the finite geometry and delineate, for a given Rayleigh number, those box 
dimensions for which steady convection will necessarily be three-dimensional. With 
this knowledge it should be possible to calculate numerically the three-dimensional 
convection patterns. These three-dimensional solutions might then be used as initial 
states to obtain other three-dimensional solutions for parameter (Ra and basic hori- 
zontal wavenumber) values outside the range in which the results of this paper 
guarantee three-dimensional convection, if in fact conditions are such that the 
convection realized depends on initial conditions. 

2. Description of the method and results for Ra = 100 

Because the mathematical formulation of our problem is identical to that of Straus 
(1974), we refrain from repeating details; instead, we describe our approach qualita- 
tively and refer the reader to Straus (1974) for a complete description of the analysis. 

Consider a rectangular box containing fluid-saturated porous material with height d 
and horizont.al dimensions v d / a  in the x direction and vd/p in the y direction. The 
upper and lower surfaces of the box are maintained a t  constant temperatures with the 
lower surface hotter by AT. The side walls of the box are insulating impermeable 
boundaries; the top and bottom of the box are also impermeable. Ra, a and p are the 
only dimensionless parameters which determine the nature of the flow and temperature 
fields in the box. 
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For convection of infinitesimal amplitude, a linearized analysis suffices to determine 
the preferred mode of convection. At the onset of convection, the mode may be either 
two- or three-dimensional, depending on the box dimensions (Beck 1972). However, 
the linearized stability analysis for the onset of convection in a rectangular box is of 
little help in determining whether steady, finite amplitude convection is two- or three- 
dimensional. Instead, the stability of two-dimensional, steady, finite amplitude 
convection needs to be examined. If the steady two-dimensional flow is unstable, then 
steady convection must be three-dimensional. However, if the two-dimensional con- 
vection is stable, steady three-dimensional flow cannot be assured; indeed, three- 
dimensional convection can exist only if there is a non-uniqueness associated with 
initial conditions. 

The approach we adopt to  delineate regions of parameter (Ra,  a ,  p) space in which 
steady convection is necessarily three-dimensional is as follows. For a given Rayleigh 
number, we first establish what modes of steady two-dimensional convection can 
exist, on the basis of linear stability theory, in a box whose dimensions are character- 
ized by a and p. Consider two-dimensional rolls aligned along the y axis (' alpha rolls '). 
The marginal-stability curves are given by the simple equation 

Ra = (Z2a2 + n2)2/12a2, (1)  

where 1 = 1,2 ,  . . . gives the number of rolls within the box. For Ra greater than the 
minimum critical Rayleigh number 4n2, (1) determines a range of a, depending on I ,  
for which two-dimensional roll convection is a priori possible. Consider Ra = 100, for 
example. Single alpha (sa) rolls (1 = 1 )  are possible for 0.35 ,5 a/7r ,5 2.83, while double 
alpha (da)  rolls ( 1  = 2 )  can exist for 0.18 5 a/n ,5 1-41. The vertical lines in figure 1 
divide this a, p diagram (for Ra = 100) into regions in which sa and da convective rolls 
can exist, according to linear theory. The arrows adjacent to the lines point in the 
directions of allowable box sizes. The analysis for /3 rolls (two-dimensional rolls aligned 
with the x axis) is identical, and the horizontal lines in figure 1 delineate values of p for 
which sp and dp convective rolls are possible. 

Given the ranges of box sizes for which various modes of multicellular two- 
dimensional convection can a priori occur, we next determine, numerically, the actual 
form of the finite amplitude, steady, two-dimensiond convection for given values of 
Ra and a (or p).  A Galerkin procedure is employed, based on a truncated Fourier 
decomposition of the flow and temperature fields. An analysis of the stability of the 
convection to roll disturbances of infinitesimal amplitude perpendicular to the basic 
roll pattern is then carried out. When the finite amplitude convection is found to be 
unstable, only the disturbance with the maximum growth rate is considered. This 
mode is always found to be non-oscillatory; there may be oscillatory modes with 
smaller growth rates. The results of this stability analysis for Ra = 100 are given in 
figure 1 .  

Consider first the stability of sa rolls to s p  disturbances. Figure 1 shows two curves 
labelled sausp (single a unstable to single p)  which, together with the relevant hori- 
zontal and vertical lines, define regions of the a, /3 plnnc in which sa rolls are unstable 
to s p  disturbances. The arrows point towards the regions of instability. From the figure 
it can be seen that sa rolls are stable against all $3 disturbances for 0 . 7 2  5 a/n 5 1.77. 
For other values of a, there are certain ranges of /3 for which the sa rolls are unstable. 
For example, for a/n = 0-6, sa rolls are unstable to sp disturbances when /3/n is 
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FIGURE 1. Stability of steady two-dimensional convective rolls in a box with horizontal dimen- 
sions nd/a and ?rd/P for Ra = 100. Horizontal and vertical lines denote ranges of box sizes for 
which single alpha (sa) ,  double alpha ( d a ) ,  single beta ( sp )  and double beta (dp) rolls can exist 
on the basis of linear stability theory. The curves denoted sausp delineate box dimensions for 
which finite amplitude s a  rolls are unstable to infinitesimal sp rolls; the arrows point to regions 
of parameter space in which s a  rolls are unstable. The curves denoted spusa have a similar 
interpretation. In the shaded region, su and s p  rolls are unstable to  each other. 

between about 0.55 and 1.93; other P / m  ranges for which sct rolls are unstable are 0.35 
to 2-67 for a/n = 0.4 and 0.65 to 2.17 for a/n. = 2.3. Mirror images of the sausp curves 
about the diagonal ct = p give the spusct curves delineating, in part, the regions of the 
a, p plot in which sp rolls are unstable to sct disturbances. 

The shaded region of figure 1 is of particular interest; within it SCL rolls are unstable 
to s,13 disturbances, but s p  rolls of finite amplitude are also unstable to sct disturbances. 
Thus if only single cells were possible ( I  = l), convection in boxes whose dimensions 
lay in the shaded area of figure 1 would be either oscillatory or steady and three- 
dimensional. 

The situation is more complicated than figure 1 shows because of the possibility of 
multicellular two-dimensional convection. Thus the shaded area of the figure cannot 
be identified as a region of three-dimensional steady convection until we have con- 
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sidered the stability of steady double-cell rolls. The figure shows that, on the basis of 
linear theory, double rolls can occur for parameter values lying in the shaded area. 
If we were to ascertain that in the shaded area (or in a portion of i t)  double a or /3 rolls 
were unstable, then the stability of triple-cell rolls would have to be investigated. 
Indeed, before i t  could be concluded that in a region of the a,  pplane steady convection 
would necessarily be three-dimensional, the stability of all multicellular convective 
roll patterns which could exist in the region, according to linear theory, would have 
to be considered. It is not necessary to go beyond the double-cell roll, to even larger 
numbers of rolls, to preclude the necessity of any three-dimensional steady convection 
in the shaded area of figure 1 because, as we shall see shortly, steady double-cell 
convective rolls are stable forms of convection therein. 

By appropriately scaling the curves in figure 1, we can easily delineate the regions 
of a ,  p space which correspond to stability of multicellular convective rolls to multi- 
cellular roll disturbances normal to the basic pattern. Consider, for example, the 
stability of sa rolls to d/3 disturbances (double-cell /? roll disturbances). For a given a ,  
the sausp curves in figure 1 determine a range of /3 for which the sa convection is 
unstable to single p rolls. The physical situation is identical for a box whose dimension 
in the y direction is twice as large. Thus sa rolls in such a larger box would be unstable 
to double-cell /3 roll disturbances; the /3 values would be half of those which lead to 
instability via single j3 disturbances in the smaller box. To generate the saudp curves 
in figure 2, we need only to halve the ordinates of the sausp curves in figure 1 a t  fixed a. 
The spuda curves in figure 2 are mirror images about the line a = /3 of the saudp curves. 
It is now clear how to generate all the curves in figure 2 :  dausp is obtained by halving 
the abscissae of the sausp curves for fixed p, daudp is obtained by halving the 
ordinates of the dausp curves a t  fixed a ,  and so forth. 

Figure 2 completely delineates the stability of single- and double-cell convective 
rolls in rectangular boxes of arbitrary size to orthogonal single- and double-cell roll 
disturbances for Ra = 100. It can be seen a t  once from figure 2 that the region which 
was shaded in figure 1 and identified as a possible area of steady three-dimensional 
convection lies almost entirely within a region of a,  p space in which double-cell a or p 
rolls are each stable forms of two-dimensional convection. Only in very narrow slivers 
on the borders of the shaded quadrilateral in figure 1 is i t  possible to decide, on the 
basis of the stability curves in figure 2 ,  whether da or d p  rolls are preferred. Within the 
shaded region of figure 2, s a  or s p  convection rolls cannot exist, while da and d p  rolls 
are unstable. Thus this area is a second potential region of a, /3 space in which steady 
convection might have to be three-dimensional. However, triple alpha (ta) and triple 
beta (tp) rolls could exist in the boxes of this second shaded region, and the stability of 
these and even higher-order modes would need to be considered before concluding 
anything about the necessity of three-dimensicnal convection. 

We have carried the analysis up to and including ta and t/3 modes for Ra = 100 
without being able to identify a region of a ,  p space in which steady convection is 
necessarily three-dimensional; some two-dimensional, perhaps multicellular roll 
pattern is always a stable configuration. The existence of three-dimensional steady 
convection at  this Rayleigh number would depend on a non-uniqueness associated 
with initial conditicns. 
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FIGURE 2. Stability of single- and double-cell convective rolls for Ra = 100. In  the shaded region, 
su and s p  rolls cannot exist and da and dp rolls are unstable. 

3. Results for Ra = 200, 340 and 400 

The procedure we have described in some detail for Ra = 100 has also been carried 
out for other values of Ra; the results are shown in figures 3-5 for Ra = 200, 340 and 
400, respectively. As was the case for Ra = 100, it is not possible to delineate a range 
of box sizes for which steady convection would necessarily be three-dimensional when 
Ra = 200. This conclusion is based only on the stability curves shown in figure 3, and 
we cannot rule out the possibility that an extension of these curves to the higher-order 
multicellular modes might define regions of a,  parameter space which require steady 
convection to be three-dimensional. 

By comparing figures 2 and 3 one can see significant distortions of the stability 
curves which eventually produce the shaded regions of a ,  space in figures 4 and 5, 
corresponding to boxes in which steady convection is necessarily three-dimensional 
at the higher values of Rayleigh number appropriate to the latter figures. Thus, for 
Rayleigh numbers larger than some value between 200 and 340, it becomes possible, 
with our approach, to delineate box dimensions requiring steady convection to be 
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FIGURE 3. Stability curves for Ra = 200. 

three-dimensional. The additional constraints on the flow imposed by the side walls of 
the box can be appreciated by recalling that between infinite parallel planes steady 
convection is necessarily three-dimensional only for Ra 2 380. 

At Ra = 340, there are many regions of parameter space in which steady convection 
must be three-dimensional. For the purposes of discussion, we focus on one of these 
regions: the shaded region bounded by the curves spusa, sausp and dpusa in figure 4. 
A similar region does not exist at Ra = 100 (figure 2) since the spusa curve does not 
intersect either the sausp or the dpusa curve. At R a  = 200 (figure 3), a similar region 
is also absent, but the sj lusa curve is now seen to intersect the sausp curve and to lie 
much closer to the dpusa curve than it did a t  Ra = 100 (figure 2).  The development 
with the R%yleigh number of this unstable region in figure 4 can thus be traced through 
figures 2 and 3. On the basis of figures 2-4, one can estimate that a similar unstable 
region should first occur for some value of Ra much closer to 200 than to  340. 

That in this particular region of figure 4 steady convection must indeed be three- 
dimensional can be argued as follows. First, the region lies completely in that portion 
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FIGURE 4. Stability curves for Ra = 340. Within the shaded regions, convection must be either 
unsteady or steady and three-dimensional. Note that tuusp and tpusa curves are required to 
delineate some of the shaded a r e a  

of a, pspace in which sa or s p  steady convection is apriori possible. However, from the 
stability curves, it is clear that neither sa or sp could exist since each is unstable to the 
other. Within a portion of this region da convection is a priori possible. However, this 
area lies far to the right of the dausp curve, where da convection is unstable to sp rolls. 
Thus steady da convection cannot occur for box sizes in the shaded region. Neither 
could any higher-order multicellular a rolls exist in this shaded region of figure 4 since, 
for example, ta convection could not exist for a/m 2 1-9. Within this region of figure 4, 
dp and tp cells are also a priori possible configurations for steady convection. But the 
positions of the stability curves dpusa and tpusa ensure that neither of these modes 
could in fact exist. Thus all possible forms of steady two-dimensional convection in 
this region have been shown to be unstable. One must conclude that either no steady 
convection is possible for such box sizes at Ra = 340 or steady convection is fully 
three-dimensional. By analogous reasoning, the reader may verify that in the 
remaining shaded regions of figure 4 steady convection would be three-dimensional. 
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FIGURE 5 .  Same as figure 4 for Ra = 400. 

The shaded regions of parameter space in figure 5 define those box sizes for which 
steady conrection is necessarily three-dimensional a t  Ra = 400. The regions are 
similar to the ones shown in figure 4 for the lower Rzyleigh number. As Ra increased 
from 310 to 400, the regions of parameter space in which steady convection would 
have to be three-dimensional increased in size and coalesced into the simply connected 
shaded domain of figure 5. 

4. Summary and discussion 
We have outlined an approach whereby one can predict the dimensions of a box in 

which convection would necessarily be either unsteady or steady and fully three- 
dimensional. Thus investigators interested in three-dimensional convection will be 
able to  choose appropriate box sizes for their studies. The approach has been applied 
to thermal convection in a box containing saturated porous material. For Ra = 100 and 
200, it appears unlikely that there are any box dimensions for which there is not a 
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stable (possibly multicellular) two-dimensional steady motion. Box dimensions have 
been found for which convection must either be unsteady or steady and three- 
dimensional at  Rzyleigh numbers of 340 and 400. Steady two-dimensional convection 
between infinite parallel planes is necessarily unstable only for Ra 2 380, but when the 
rolls are forced to fit within a box, they are unstable, for a t  least some box sizes, a t  
substantially lower Rayleigh numbers. For Rn = 340 and 400, we have shown that 
two-dimensional rolls are unstable in boxes which have heights ranging from one to 
four or five times their horizontal dimensions. Because of the complexity introduced by 
the possibility of high-order multicellular convection a t  these Rayleigh numbers, we 
have not attempted to investigate the situation for boxes which are both wider and 
longer than they are tall. 

Our approach could also be applied to thermal convection in an ordinary viscous 
fluid in a box by extending the work of Busse (1967) to determine the range of cross-roll 
wavenumbers which destabilize a basic finite amplitude convective roll of given wave- 
number and Rayleigh number between infinite parallel planes. This could be done only 
if the side walls of the box were slippery boundaries. If the sides of the box were no-slip 
surfaces, then a completely new study of the stability of convective rolls in a viscous 
fluid in a box would be required. Porous-medium convection has the advantage, for 
our method, of allowing slip parallel to confining rigid boundaries. 

We stress again that steady three-dimensional convection might occur a t  Rayleigh 
numbers and box sizes for which two-dimensional convective rolls are stable forms of 
convection if the form of convection has a non-uniqueness associated with initial 
conditions. Finally, although we have not emphasized this, the stability curves 
presented here can be used to determine those multicellular rolls which are stable for 
a given Rayleigh number and box size. 

This work was supported by the National Science Foundation under grant number 
ENG-7682119. 
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